Characterising 3D spherical packings by principal component analysis
نویسندگان
چکیده
منابع مشابه
Compression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کامل3D Reconstruction of Coronal Loops by the Principal Component Analysis
Knowing the three dimensional structure of plasma filaments in the uppermost 1 part of the solar atmosphere, known as coronal loops, and especially their length, is an 2 important parameter in the wave-based diagnostics of this part of the Sun. The combination 3 of observations of the Sun from different points of observations in space, thanks to the 4 most recent missions including SDO and STER...
متن کاملROBUST PRINCIPAL COMPONENT ANALYSIS? By
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; ...
متن کاملPrincipal Component Projection Without Principal Component Analysis
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering Computations
سال: 2019
ISSN: 0264-4401,0264-4401
DOI: 10.1108/ec-05-2019-0225